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PROSPECTS

Upstream and Downstream Targets of RUNX Proteins
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Abstract In recent years, the in vivo role of the threemembers of the RUNX family of transcription factors has in part
been elucidated. While Runx1 is essential for mature haematopoiesis and Runx2 for osteochondrogenesis, Runx3 has a
function in the nervous system. Translocations and mutations affecting the RUNX1 gene are clearly implicated in
leukemogenesis whereas recent data suggest that changed expression levels of RUNX3 may be involved in gastric
carcinogenesis. Germ line mutations in RUNX2 have been identified in patients with an autosomal dominant skeletal
disorder, cleidocranial dysplasia. While a number of pathways have been delineated that regulate RUNX activity,
transcription factors binding to RUNX promoters are only beginning to be identified. A growing number of genes have
been characterised that are being regulated in their transcriptional activity by different RUNX proteins. Whether a
particular RUNX protein specifically targets a defined subset of downstream genes or whether there is some redundancy
as to which RUNX protein activates which target promoter remains to be elucidated. J. Cell. Biochem. 89: 9–18, 2003.
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The RUNX family of transcription factor
proteins consists of three known members
(RUNX1–3) that share a high degree of se-
quence homology within most of their coding
regions. The amino terminal part of these prot-
eins comprises a region of 128 amino acids with
conserved sequence homology to theDrosophila
transcription factor runt. This so-called runt
homology domain (RHD) binds to DNA in a
sequence specific manner.

The finding that RUNX1 (aka AML1) as well
as the RUNX-interacting protein CBFB are
frequent partners in fusion proteins resulting
from chromosomal translocations (the most
frequent being t[8;21], inv[16], t[12;21]) in acute
leukaemias and associated with specific leukae-

mia phenotypes (AML of FAB subtype M2,
M4eo, ALL with B-cell precursor phenotype,
respectively) with relatively good prognosis, has
generated considerable interest in the haema-
tological field. In recent years ‘‘knock-out’’ mice
have been generated for all three Runx genes,
and the analysis of their phenotypes has
provided new insights into the in vivo function
of RUNX proteins. Even though their expres-
sion patterns overlap in some organs, the
phenotypes produced by the lack of the indivi-
dual factors are distinct and point to key roles
in the development of different cell lineages.
Deficiency in Runx1 expression leads to an early
block in haematopoietic differentiation. There-
fore Runx1 knockout mice completely lack
mature haematopoiesis [Okuda et al., 1996;
Wang et al., 1996]. In contrast, homozygous null
mutants for Runx2 (AML3) show an arrested
osteoblast differentiation and thus are totally
devoid of bone [Komori et al., 1997; Otto et al.,
1997]. Recently, we and others have reported on
the phenotype of Runx3 (AML2) deficient mice
[Inoue et al., 2002; Levanon et al., 2002; Li et al.,
2002]. While Li et al. [2002] described a
hyperplasia of the gastric mucosa and sug-
gested a link between lack of Runx3 expression
and human gastric cancer, we did not find any
evidence of gastrointestinal pathology in our
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mice. Both Runx3 deficient mouse strains suffer
from severe limb ataxia due to a loss of dorsal
root ganglia proprioceptive neurons.

In recent years the pathways in which the
different RUNX proteins are involved are
beginning to be elucidated.

SIGNALS UPSTREAM OF RUNX PROTEINS

Relatively little is known about the factors
and pathways that control the expression of the
three RUNX genes. It has become clear that
each of the three genes is transcribed from two
promoters [Ghozi et al., 1996; Xiao et al., 1998;
Rini and Calabi, 2001]. The sequences of all six
promoter regions contain several RUNX bind-
ing sites and indeed, auto regulation of RUNX
expression by RUNX proteins has been shown
[Drissi et al., 2000]. It is not clear, however,
whether each RUNX protein acts mainly on its
own promoter, for example, to stabilise the ex-
pression pattern or to prevent too high expres-
sion levels via negative feedback, or whether
RUNX proteins bind to the promoters of the
genes of the other two family members to inhibit
their expression, in a kind of intrafamilial
competition.

Promoter analysis proved transcriptional
activity of both, the proximal (P2) and distal
(P1) promoters of the RUNX1 gene [Ghozi et al.,
1996]. A more detailed analysis of the distal
(P1) promoter of Runx2 recently identified two
distinct sites regulating transcriptional activ-
ity. While an NF1 site seems to bind NF1-A in
non-osseous cells and suppresses Runx2 gene
activity, an AP1 site preferentially binds FosB
to increase transcription in osteoblastic cells
[Zambotti et al., 2002]. Furthermore the tran-
scription factors Msx2, Bapx1, Hoxa-2 and
PPARg2 have been shown to regulate Runx2
expression, although no evidence for a direct
interaction of these factors with the Runx2
promoters could be demonstrated so far
[Kanzler et al., 1998; Lecka-Czernik et al.,
1999; Tribioli and Lufkin, 1999; Satokata et al.,
2000].

RUNX1, RUNX2 and RUNX3 transcription
appears to be regulated by retinoids [Tanaka
et al., 1995; Le et al., 1999; Jimenez et al., 2001].
Treatment with all-trans retinoic acid of U937
and HL-60 myeloid leukaemia cells, respec-
tively, leads to an increase in expression levels
of RUNX1 and RUNX3. RUNX3 expression in
these cells could be augmented by vitamin D3.

Therefore RUNX3 expression may be regulat-
ed by retinoid/vitamin D nuclear receptors.
RUNX2 transcription decreases when MC3T3
calvaria or ROS17/2.8 osteosarcoma cells are
treated with vitamin D3. Importantly, in
ROS24.1 osteosarcoma cells lacking functional
vitamin D receptors, no such effect is observed.
The proximal RUNX2 promoter (P2) contains a
vitamin D responsive element, and mutations in
this element abolish vitamin D dependent re-
gulation [Drissi et al., 2002]. Thus all three
RUNX genes are transcriptionally controlled by
retinoid/vitamin D nuclear receptors, albeit
with the regulatory effect being positive for
RUNX1 and RUNX3 and negative for RUNX2.
Two other pathways involving nuclear re-
ceptors are directly or indirectly involved in
RUNX2 regulation, since its expression can be
increased by treatment of cells with tamoxifen
and similar substances that act as estrogen
receptor modulators, as well as with glucocorti-
coid hormone dexamethasone [Prince et al.,
2001; Tou et al., 2001].

A number of cytokines have been shown to
influence expression levels of RUNX2. TGFb
suppresses RUNX2 expression in ROS17/2.8
osteosarcoma cells, while in C2C12 myoblast
precursor cells it induces RUNX2 transcription
levels [Lee et al., 2000; Alliston et al., 2001]. The
signal triggered by TGFb is mediated through
TGFb receptors that recruit Smad factors. The
different effects in the two cell lines on RUNX2
expression may therefore reflect the cellular
context of accessory proteins involved in control
of RUNX2 expression. Bone morphogenetic
proteins (BMP) are members of the TGFb
superfamily and exert their effects also through
Smad proteins. BMP-2 and BMP4/7 were shown
to induce Runx2 expression [Tsuji et al., 1998;
Lee et al., 2000; Banerjee et al., 2001]. Other
cytokines that were shown to regulate RUNX2
expression are FGF and TNFalpha [Zhou et al.,
2000; Gilbert et al., 2002].

Translation has been demonstrated to be a
further level of control of RUNX expression
[Pozner et al., 2000; Sudhakar et al., 2001].
In addition, post-translational events such as
phosphorylation via MAPK pathway seem to
play a role in the transactivating potential of
RUNX proteins [Tanaka et al., 1996; Xiao et al.,
2000]. These data providing insight into path-
ways governing RUNX expression are sum-
marised in Figures 1 and 2. More work will
have to be directed towards identifying the
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transcription factors immediately upstream of
the different RUNX genes. Such studies will
elucidate the basis for the evolution of different
functions for the three genes that are so similar
in structure and encoded proteins.

DOWNSTREAM TARGETS OF
RUNX PROTEINS

RUNX proteins regulate the activity of their
target genes by binding to the respective
promoter or enhancer elements in a sequence-
specific manner. The runt domain mediates
sequence specificity for the consensus sequence
that is cited as either 50-PuACCPuCA-30, or in
reverse orientation, 50-TG(T/C)GGT-30. How-
ever, the sequence 50-AACCACA-30 seems to
occur somewhat more frequently in proven or
bona fide RUNX target promoters than other
sequences also in agreement with the consen-
sus. Table III lists putative or proven RUNX
binding sites in the promoter regions of various
target genes.

It is by now clear that RUNX proteins bind to
their targets as part of multiprotein complexes.
The cofactor CBFB that interacts with the RHD
seems to be crucial for an effective interac-
tion with the binding sites in the respective

target promoters or enhancers. Cooperation
with RUNX proteins at target promoters has
also been described for the transcription fac-
tors c/EBPalpha, c/EBPbeta, c/EBPdelta, ets-1,
MEF, PAX5 and Mi through physical interac-
tion [Wotton et al., 1994; Petrovick et al., 1998;
Libermann et al., 1999; Mao et al., 1999; Morii
et al., 1999; Gutierrez et al., 2002]. Other
proteins like ALY may stabilise such interac-
tions [Bruhn et al., 1997].

RUNX proteins are able to either increase or
actively inhibit the transcriptional activity of
target genes, most likely depending on the
specific cell type as well as the particular target
gene. For transcriptional repression, RUNX
proteins recruit transcriptional co-repressors
like sin3A or members of the TLE protein
family, the latter interacting with the carboxy-
terminal VWRPY pentapeptide motif [Imai
et al., 1998; Levanon et al., 1998; Wang et al.,
1998; Javed et al., 2000].

Several genes have been characterised as
RUNX targets (see Tables I and II for compila-
tion). While for some of these (e.g., osteocalcin)
there is very firm experimental proof that
RUNX proteins bind to the respective promoter
and modify transcriptional activity, for others
there is sometimes less direct evidence (e.g.,

Fig. 1. Regulation of RUNX1 activity. White squares indicate phosphorylated proteins.
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Fig. 2. Pathways involved in regulating the activity of RUNX2. White squares indicate phosphorylated
proteins.Questionmarks indicate that for these factors a direct interactionwith the RUNX2promoter has not
been shown.
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changes in expression levels after transient
transfection of RUNX in the presence of puta-
tive RUNX binding sites), and they may in fact
only be a member of the same intracellular
pathway.

Which RUNX protein regulates which of the
target genes? This question may have a number
of answers. First, the specificity of a RUNX
protein for a given target may reflect the RUNX
expression pattern. In some cell types only one
of the three RUNX genes is expressed (e.g., in
osteoblasts, RUNX2). However, in some tissues
two or all three RUNX genes are expressed (e.g.,
cartilage) [Levanon et al., 2001; Stricker et al.,
2002]. Second, the target promoter context
may only allow a certain RUNX protein to bind.

In vitro, the RUNX proteins seem to be inter-
changeable. Nevertheless, the situation may be
quite different in vivo. However, positive ex-
periments addressing this issue have not been
published. A ‘‘knock-in’’ of one RUNX protein’s
cDNA into the locus of another RUNX gene
might be able to discriminate between the two
possibilities.

The large number of (putative or proven)
RUNX targets that have been characterised in
different tissues reflect the period of time that
has passed since the discovery of a role for
RUNX proteins in the respective cellular con-
text and the impact of leukaemia and genetic
studies importing upon the search for targets.
Therefore most known targets are expressed in

TABLE I. Target Genes of RUNX Proteins in Haematopoietic Tissues

Tissue Gene Expressed in Regulated by Up/down References

Lymphoid Germ-line IgA1 B-cells Runx1 Up Pardali et al. [2000]
Germ-line IgCa B-cells Runx3 Up Hanai et al. [1999]
B-cell specific tyrosine

kinase (BLK)
B-cells Runx1 Up Libermann et al. [1999]

TCR a,b,g,d-chains T-cells Runx1 Up Hsiang et al. [1993]; Giese
et al. [1995]; Hernandez-
Munain and Krangel
[1995]; Meyers et al.
[1995]; Bruhn et al. [1997]

IL-3 T-cells Runx1 Mao et al. [1999]
Granzyme B T-cells Runx1 Up Wargnier et al. [1995]
CD3 T-cells Runx1 Up Hallberg et al. [1992]
GM-CSF T-cells Runx1 or

Runx2
Up Takahashi et al. [1995]

Myeloid M-CSF receptor Monocytes Runx1 Up Zhang et al. [1994]; Zhang
et al. [1996]; Petrovick et al.
[1998]

MPO Immature myeloid
cells

Runx1 Up Britos-Bray and Friedman
[1997]; Nuchprayoon et al.
[1994]

p14ARF Multiple cell types Runx1 Up Linggi et al. [2002]
p21Waf1/Cip1 K562, NIH3T3 and

others
Runx1 Up in K562,

down in
NIH3T3

Lutterbach and Hiebert
[2000]

Complement receptor 1 Haematopoietic cells Runx1 Up Kim et al. [1999]
Defensin NP-3 Myeloid cells Runx1,2,3 Up Westendorf et al. [1998]
Mast cell protease 6 Mast cells Runx1 Up Ogihara et al. [1999]
Neutrophil elastase Immature myeloid

cells
Runx1 Up Nuchprayoon et al. [1994]

UBP43 Macrophage AML1-Eto Up Liu et al. [1999]
CD11a Leukocytes Runx1 Up Puig-Kroger et al. [2000]
CD36 Macrophage Runx1 Up Armesilla et al. [1996]
CD53 Meukocytes, primitive

myeloid cell line L-G
Runx1a Down Shimada et al. [2000]

HERF1 Erythroid cells Runx1 Up Harada et al. [1999]
MDR1 Leukemic cells Runx1,2,3 Down Javed et al. [2000]
Art-1 Myeloid and erythroid

cells
Runx1 Up Harada et al. [2001]

MRP14 Primitive myeloid cell
line L-G

Runx1 Down Shimada et al. [2000]

Stefin 3 Primitive myeloid cell
line L-G

Runx1 Down Shimada et al. [2000]

Uridine phosphorylase Primitive myeloid cell
line L-G

Runx1 Down Shimada et al. [2000]

Pim-2 Primitive myeloid cell
line L-G

Runx1a Down Shimada et al. [2000]

Mast cell
carboxypeptidase A

Primitive myeloid cell
line L-G

Runx1a Up Shimada et al. [2000]
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cells of the haematopoietic and lymphoid com-
partment, others in bone and cartilage. To date
no transcriptional targets have been described
in other RUNX expressing tissues such as
dorsal root ganglia, testis and endothelium.
Generally most target genes studied encode
proteins that are specific for and restricted to

the given cell type. However, it cannot be ruled
out that this may also reflect the specific
interest of investigators rather than represent
a feature of the respective RUNX protein.

The target gene that has clearly been studied
in most detail with respect to transactivation by
a RUNX protein is osteocalcin. Studies on the

TABLE II. Runx Target Genes in Skeletal Tissues

Tissue Gene
Expressed

in
Regulated

by
Up/

down References

Bone Osteocalcin Osteoblasts Runx2 Up Geoffroy et al. [1995]
Collagen a1(I) Osteoblasts Runx2 Up Ducy et al. [1997]
Bone sialoprotein Osteoblasts Runx2(1,3) Up or

Down
Ducy et al. [1997]; Javed et al.

[2001]
Ameloblastin Odontoblasts Runx2 Up Dhamija and Krebsbach [2001]
TGF-b receptor I Osteoblasts Runx2 Up Chang et al. [1998]; Ji et al. [1998]
C/EBPd Osteoblasts Runx2 Up McCarthy et al. [2000]
Osteoprotegerin Osteoblasts Runx2 Up Thirunavukkarasu et al. [2000]
RANKL Osteoblasts Runx2 Up Geoffroy et al. [2002]; Kitazawa

et al. [1999]
Osteopontin Osteoblasts chondrocytes Runx2 Up Ducy et al. [1997]
Collagenase 3 Osteoblasts, hypertrophic

chondrocytes
Runx2 Up Jimenez et al. [1999]

Cartilage Osteopontin Osteoblasts chondrocytes Runx2 Up Ducy et al. [1997]
Collagenase 3 Osteoblasts, hypertrophic

chondrocytes
Runx2 Up Jimenez et al. [1999]

Collagen X Hypertrophic condrocytes Runx2 Up Leboy et al. [2001]
VEGF Hypertrophic chondrocytes Runx2 Up Zelzer et al. [2001]

TABLE III. Runx Binding Sites in Promoters of Runx Regulated Genes

Gene Sequence Position References

Human RUNX1 (P1) TGTGGAA �69 Ghozi et al. [1996]
Murine Runx2 (P1) CACCACA �1024 Xiao et al. [2001]

TACCACA � 338
AGTGGTA � 119
AACCACA �74
AACCACA þ29
AACCACA þ37
TGCGGTG þ47

Human RUNX3 (P1) AACCACA � 4 Bangsow et al. [2001]
AACCACA þ 5

Human IL-3 TGTGGT � 139 Uchida et al. [1997]
TGTGGG �52

Murine myeloperoxidase AACCACA Enhancer Nuchprayoon et al. [1994]
Neutrophil elastase GGCCACA �72 Nuchprayoon et al. [1994]
M-CSF receptor TGTGGTT �73 Fears et al. [1997]
Human granzyme B CACCACA �92 Wargnier et al. [1995]
TCRa TCCCGCA Enhancer Giese et al. [1995]
Complement receptor 1 TGTGGT �42 Kim et al. [1999]
Rat collagenase 3 AACCACA � 132 D’Alonzo et al. [2002]; Jimenez et al. [1999]
Murine RANKL AACCACT � 207 Geoffroy et al. [2002]; Kitazawa et al. [1999]
Rat TGF-b receptor type I TTCCGCA �1101 Ji et al. [1998]

GGCCGCA �1077
AACCGCG � 546
AGCCACA � 313
AACCACG � 251
GGCCGCG �81

Murine osteopontin AACCACA � 136 Sato et al. [1998]
Murine osteocalcin AACCACA � 136 Ducy et al. [1996]
Murine ameloblastin CACCAA �248 Dhamija and Krebsbach [2001]
Chicken BSP TGTGGAG �1204 Javed et al. [2001]

AACCACA � 813
AGTGGTC � 514
TGTGGTG � 444
TGTGGTT � 414
TGTGGTG � 318

C/EBPd AACCGCA �165 McCarthy et al. [2000]
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osteocalcin promoter provided the first evidence
that a member of the RUNX family is an im-
portant regulator of osteoblast-specific gene
expression [Geoffroy et al., 1995; Merriman
et al., 1995]. This promoter contains three
perfect RUNX binding sites, and a protein with
immunoreactivity to RUNX1 antibodies was
shown to bind to these sequences [Banerjee
et al., 1996; Ducy et al., 1996]. Overexpression
of RUNX1 in non-osseous cells was able to
increase osteocalcin transcription [Banerjee
et al., 1996]. Later RUNX2 was identified as a
transcription factor with an osteoblast-specific
expression pattern and shown to induce osteo-
calcin expression in this cell type [Ducy et al.,
1997; Komori et al., 1997; Otto et al., 1997].
Although it is now widely accepted that RUNX2
is the RUNX protein that regulates osteocalcin
expression, the earlier experiments involving
RUNX1 point to potential pitfalls in the inter-
pretation of such results. In in vitro experi-
ments using forced expression of RUNX
proteins to investigate the transactivation of
potential target genes, any of the three RUNX
proteins may be able to increase the target gene
expression. Therefore this type of experiment
may not tell us which RUNX protein regu-
lates which target in a physiological context.
Furthermore, a given target gene may in fact
be regulated by different RUNX proteins in dif-
ferent tissues.
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